Author(S): N. A. Shah , F. A. Khanday

Title: A DC stabilized log-domain \(n \)-th order multifunction filter based on the decomposition of \(n \)-th order HP filter function to FLF topology.

Keywords:
- Analogue Integrated Circuits, Log-Domain Filters, High-Order Filters, Multifunction Filters, DC Stabilized Filters, Multiple Feedback Filters, Follow-The-Leader-Feedback Topology

Year: 2009

Name of journal: *International Journal of Circuit Theory and Applications*

Volume & Issue: 37(10)

Page No: 1075-1091

Institute: Department of Electronics and Instrumentation Technology, University of Kashmir, Srinagar, India.

Abstract

The design of high-order log-domain filters can be easily accomplished by transposing already known linear-domain \(G_m-C \) filter topologies to their counterparts in the log-domain through the employment of a set of complementary operators. To achieve the \(G_m-C \) filter topologies, the multiple feedback approach is widely used due to its accrued advantages. In this paper a synthesis approach for the development of an \(n \)-th order multifunction log-domain filter comprising lowpass (LP), highpass (HP) and bandpass (BP) filter functions is proposed. The approach is based on the decomposition of \(n \)-th order HP filter function to follow-the-leader-feedback (FLF) topology. The design is simple and simultaneously achieves nearly all of the chief advantages. The design offers superior performance factors vis-à-vis the ones recently reported. To verify the high-order behavior of the topology, a 5th-order multifunction filter was designed and the achieved simulated results verify the theory.

DOI: [10.1002/cta.533](https://doi.org/10.1002/cta.533)